Certificate of Authority to use the Official API Monogram License Number: 5L-0713 ORIGINAL The American Petroleum Institute hereby grants to M/S JINDAL (INDIA) LIMITED, LINE PIPE DIVISION NH-6, Jangalpur Village: Andul, Mouri Howrah, West Bengal India the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1® and API Spec 5L and in accordance with the provisions of the License Agreement. In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number: 5L-0713 The American Petroleum Institute reserves the right to revoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute. The scope of this license includes the following: Manufacturer of Line Pipe Plain End at PSL 1: Type of Pipe: HFW / Delivery Condition: R,N,M / Highest Grade: X70; Manufacturer of Line Pipe Plain End at PSL 2: Type of Pipe: HFW / Delivery Condition: R,N,M / Highest Grade: X70 QMS Exclusions: Section 7.3, Design and Development; Section 7.5.4, Customer Property Effective Date: JULY 6, 2009 Expiration Date: JULY 6, 2012 To verify the authenticity of this license, go to www.api.org/compositelist. American Petroleum Institute Director of Training and Certification Programs he modern Tubes & Pipes industry in India owes its origin to the grand vision of Shri B. C. Jindal. The seed was sown with the incorporation of Jindal (India) Limited on the auspicious day of Makar Sankranti, 14th January 1952. The manufacturing facilities were initially set up for the production of steel pipe fittings. Subsequently, the company installed machinery /equipments to produce ERW pipes in the year 1966 at Belur, District Howrah. The company started producing M.S Black/Galvanized ERW Pipes/Tubes confirming to National and International Standards. The technology and product range was continuously upgraded to cater the growing needs of varying products and quality required by the market in the developing economy. The manufacturing facilities that includes Cold Rolled, Galvanized Sheets Coils & Line Pipes, all units are accredited with ISO: 9001-2008 Since 2007, the organization expanded its activities by initiating pipe manufacturing facility at Jangalpur Works for pipe sizes up to 20" Outside Diameter largely required by Oil and Gas Industry for their ever increasing requirement of Line pipes. Backed by such long history in production of steel tubular products and constant quest for technology, the manufacturing facilities were modernized with technological improvement as a result of consistent dialogue with customers and user industry. The company is now able to cater the wide segment of Welded Steel Pipes and Tubes, Cold Rolled, Galvanized Sheet & Coils to consumers in India and overseas. This brochure is to introduce the Line Pipe manufacturing facility for EW/HFW Steel pipes up to 20" (508mm) Outside Diameter at Jangalpur Work with facilities for **3LPE/LPP** coating on pipes. Some of the features are Spiral Accumulator, the first in the country for this size of the mill and Coil Edge Milling machine of latest technology. The facility is equipped to produce High Strength Steel Line pipes up to Grade X-70 in API 5L PSL 2 considering the requirements of Oil and Gas sector. Pipes for water wells, water transmission; slurry transportation and structural applications are also catered to various standards. JINDAL (INDIA) LIMITED as a company is dedicated to quality product and outstanding services. The friendly and knowledgeable staff ensures that the customer's enquiries and orders are dealt with promptly. The low production cycle assists in reliable product deliveries. The extensive product range reflects our constant endeavor for improved workmanship and procedures. By adaptation of new technologies and maintaining strict quality control, JINDAL (INDIA) LIMITED is able to offer the finest HFW pipe products in the industry. The Electric Welded pipes in HFW category are increasingly accepted for High Integrity applications in the Oil & Gas sector: For its improved Dimensional Control all along that helps coating/field joint efficiency. Precise control of Mechanical Properties & Surface Quality inherent in HR Coils. No extraneous input of material for welding, besides advantage of latest forming & solid state HF Welding Technology. #### MANUFACTURING PROCESS FLOW Pipe Hydrostatic Tester Weld Ultrasonic Tester **Body Ultrasonic Tester** Marking & Rust Preventive Coating Weighing & Measuring Customer Inspection Bench Works Inspection Bench 3 ### **MILL FACILITIES:** **JINDAL (INDIA) LIMITED,** Line Pipe Division is now equipped with modern line pipe production facilities supplied by leading designers & manufacturers of pipe plant equipments all over the world. UNCOILER, LEVELLER & PINCH ROLL: Double cone type un-coiler, variable type speed five roll leveler and pinch roll. # **SHEAR END WELDER** **SHEAR END WELDER** that improves the production efficiency and welded pipe quality, it has a PLC control method with CO2 gas protection MIG welding. Two nos. of such welder of DC-600 type with current and voltage control gives a smooth butt- weld in an auto control mode in a working cycle of 3 to 8 minutes. #### SPIRAL COIL ACCUMULATOR The Modern **SPIRAL COIL ACCUMULATOR** for high speed high frequency straight line welding is designed to store & provide the strip for the mill to ensure continuous welding. The strip comes out of the accumulator without hindrance and feeding strip continuously to the pipe forming line with no stretcher strain, no folded steel material and no partial plastic deformation. It stores strip of different width & thickness without complicated adjustment. The Accumulator out let strip speed is upto 35 mtr/min that synchronizes with the mill speed. ### **STRIP EDGE MILLING** The side trimming of coils width from 510mm to 1630 mm steel grade upto x70 are carried out online. The EDGE MILLING machine is supplied by M/s Linsinger Maschinenbau GmbH, Austria. This machine prepares the edges for welding with high degree of accuracy of high quality material. This can cut upto a depth of 15 mm on either side. This helps in eliminating cracks and metallurgical problems in high strength materials. A precise profile with close tolerances provides excellent weld edge. ### **PIPE MILL LINE** The Ø 20" pipe mill line is designed to manufacture ERW pipes of Out side Diameter 6 5/8" (168.3mm), 8 5/8" (219.1mm), $10\sqrt[3]{4}$ " (273.1mm), $12\sqrt[3]{4}$ "(323.9mm), 14" (355.6mm), 16" (406.4mm), 18" (457.0mm) and 20" (508.0 mm) in the wall thickness range of 3.2 mm to 14.3 mm and lengths up to 18 meters with maximum line speed up to 30 mtr/min. The cage forming stand between No. $3\sqrt[3]{4}$, $4\sqrt[3]{5}$, forming stand and cage roll at fin pass stand No. $5\sqrt[3]{6}$ helps the pipe forming with minimum cold working. #### **SEAM ANNEALER** The SEAM ANNEALER with 3 solid state inverters of 500 KW each is used to normalize the weld seam structure immediately after welding. It is equipped with infrared pyrometers for accurate seam temperature monitor and a temperature recorder. # SIZING AND STRAIGHTENING The dimensions and straightness is controlled on line with sizing stands and Turks head before the pipe is cut into required length. ### **END FACING MACHINES** For end finishing as per customer requirement the line is equipped with two pairs of tool rotating type end facing machines. # **HYDROSTATIC TESTING** The **hydrostatic testing** is equipped to test each length of the pipe to the stipulated test pressure and time with a recording gauge to record test pressure & test duration. It is also equipped with interlocking system, to prevent the pipe from being classified as tested until the test requirements have been met. The inspection test pressures are carried up to 100% of the SMYS when agreed upon. # **OFFLINE ULTRASONIC TESTING SYSTEM** The **Automatic Off Line Ultrasonic** ERW Weld Inspection System (Quick Scan-UT) sourced from **M/s Olympus NDT, Canada** supplied by Blue Star Ltd. is equipped with 8 channel UT test configuration of I+I+X and two nos TR Probe for heat affected zone covering 25 mm each side, that tests the weld up to a speed of 25 m/min. with a laser seam sensor and tracking system. An additional station is specially designed to test the **body of the pipe ultrasonically** wherein there are 24 nos. of probe provided for testing the body lamination as per the customer's requirement besides covering the API 5L. #### **JINDAL High Test Line Pipe Manufacturing Facilities** | Production Capacity | 240000 MT per annum | |------------------------------|--| | Manufacturing Process | Solid State HF Welding with Seam Annealing | | Outside Diameter | 6 5/8" (168.3 mm) to 20" (508.0 mm) | | Wall Thickness | 0.125" (3.2 mm) to 0.562" (14.3 mm) | | Pipe Length | 5 meters to 18 meters | | Specifications | API 5L, ASTM, BS, DIN, JIS, IS | | Pipe Ends | Bevelled or Plain | | Protective coating | Bare or Rust Preventive coating | | End protection | Protected with Plastic/Metallic caps | #### **ADVANCED TECHNOLOGY:** A Quality Management System is incorporated at each level of manufacturing process right from selection of input material to final finished product. Care is taken to see that at each step the exact process and techniques are followed to give the perfect weld tested product. The whole gamut of state of the art quality control instruments and equipments sourced from globally renowned suppliers ensures a Total Quality Management System. The unit is certified to ISO 9001-2008, TS 29001, API Q1 for its Quality Management System for Manufacture of Line Pipes by AMERICAN PETROLEUM INSTITUTE Besides, company is an authorized user of API Monogram for APL5L PSL1 and 2 Upto X-70. **JINDAL (INDIA) LIMITED** is aided by modern process control, inspection and testing facilities, which ensures the supply of quality products conforming to most of the national and international standards of pipes. The laboratory is equipped with instruments and equipments like: - 100T Servo control electronic Universal Testing Machine with computerized recording system - **Electronic Extensometer for accurate determination of tensile properties** - Vickers hardness testers 5-50 kg load, for Hardness test in Weld, HAZ, Body - 300 Jules capacity ASTM standard Impact testing machine - High resolution metallurgical microscope with related facilities, - OES Spectrometer Equiped with over 20 channels for rapid and accurate chemical analysis of base material - Adequate No of Hand Ultrasonic Testing Machines and Ultrasonic thickness meters for speedy disposal of finished pipes - A 30000 Jules DWTT station for testing full thickness pipe samples as per requirement of customer/API RP5L3 up to -40 Deg C #### 3 Layer Poly Ethylene / Poly Propylene Coating Flow Process Specification Pipe Length **Outside Diameter** : DIN 30670, APIRP5L2 : 168.3mm to 508.0mm : 6 Mtr. to 18 Mtr. : 300 Msq/Hr (External), 250Msq/Hr (Internal) Manufacturing Process : Extrusion Process and Electrostatic Deposition : Corrosion protective coating : Plastic or Metallic End Caps 14 **Production Rate** **Protective Coating** **End Protection** **TABLE: 1 LINE PIPE SIZE RANGE** | | Diamete | r | | WALL THICKNESS (mm/Inch) | | | | | | | | | | I | Diameter |-------|---------|------|--------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|---------|------| | O.D. | O.D. | N.B. | 3.2 | 3.6 | 4.0 | 4.4 | 4.5 | 4.8 | 5.0 | 5.2 | 5.4 | 5.6 | 5.9 | 6.0 | 6.3 | 6.4 | 7.0 | 7.1 | 7.9 | 8.0 | 8.2 | 8.7 | 8.8 | 9.5 | 10.0 | 10.3 | 11.0 | 11.1 | 12.7 | 14.3 | O.D. | O.D. | N.B. | | mm | inch | mm. | 0.125" | 0.141" | 0.157" | 0.173" | 0.177" | 0.189" | 0.196" | 0.204" | 0.212" | 0.220" | 0.232" | 0.236" | 0.248" | 0.251" | 0.275" | 0.279" | 0.311" | 0.314" | 0.322" | 0.342" | 0.346" | 0.374" | 0.393" | 0.405" | 0.433" | 0.437" | 0.500" | 0.562" | mm | inch | mm | | 168.3 | 6.625" | 150 | 168.3 | 6.625" | 150 | | 219.1 | 8.625" | 200 | 219.1 | 8.625" | 200 | | 273.1 | 10.750" | 250 | 273.1 | 10.750" | 250 | | 323.9 | 12.750" | 300 | 323.9 | 12.750" | 300 | | 355.6 | 14.000" | 350 | 355.6 | 14.000" | 350 | | 406.4 | 16.000" | 400 | 406.4 | 16.000" | 400 | | 457.0 | 18.000" | 450 | 457.0 | 18.000" | 450 | | 508.0 | 20.000" | 500 | 508.0 | 20.000" | 500 | Note: 1) Sizes indicated by are supplied subject to negotiation. ²⁾ Size other than those shown in the table are also supplied subject to negotiation. TABLE - 2: HYDROSTATIC INSPECTION TEST PRESSURE | Outside | THK. | THK. | Desig | nation | Density | IN ILSI | | | EST PRI | ESSURE | (Kpax1 | 00) | | | |------------------|--|---|----------------|----------------------|--|--|--|--|---|--|--|--|--|--| | Diameter
(mm) | (inch.) | (mm) | Standard
X- | Schedule | (Plain
End) | | | | Al | PI 5L GRAD | Ε | | | | | (111111) | (IFICIT.) | (11111) | Strong | No. | (Kg/Mtr) | А | В | X-42 | X-46 | X-52 | X-56 | X-60 | X-65 | X-70 | | 168.3 | 0.125
0.141
0.156
0.172
0.188
0.203
0.219
0.250
0.280
0.312
0.344
0.375 | 3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.4
7.1
7.9
8.7
9.5 | STD | 40 | 13.03
14.62
16.21
17.78
19.35
20.91
22.47
25.55
28.22
31.25
34.24
37.20 | 59
66
74
81
89
96
103
118
131
146
161 | 69
77
86
95
103
112
120
137
153
170
187
193 | 83
93
103
114
124
134
145
165
184
204
225
246 | 90
102
113
124
136
147
158
181
201
223
246
268 | 102
115
128
141
154
166
179
205
227
253
278
304 | 110
124
138
151
165
179
193
220
244
272
299
327 | 118
133
148
162
177
192
208
236
262
291
321 | 128
144
160
176
192
208
224
256
283
315
347 | 138
155
172
189
207
224
241
276
306
340 | | 219.1 | 0.156
0.188
0.203
0.219
0.250
0.277
0.312
0.322
0.344
0.375
0.438 | 4.0
4.8
5.2
5.6
6.4
7.0
7.9
8.2
8.7
9.5 | STD | 20
30
40 | 21.22
25.37
27.43
29.48
33.57
36.61
41.14
42.65
45.14
49.10
56.94 | 57
68
74
79
91
99
112
116
123
135
157 | 66
79
86
92
106
115
130
135
144
157
183 | 79
95
103
111
127
139
157
163
173
189
220 | 87
104
113
122
139
152
171
178
189
206
241 | 98
118
128
138
157
172
194
202
214
233
273 | 106
127
137
148
169
185
209
217
230
251
293 | 113
136
147
159
181
198
224
232
247
269
315 | 123
147
159
172
196
215
242
252
267
291
340 | 132
159
172
185
212
231
261
271
288
314 | | 273.1 | 0.156
0.188
0.203
0.219
0.250
0.279
0.307
0.344
0.365
0.438 | 4.0
4.8
5.2
5.6
6.4
7.1
7.8
8.7
9.3
11.1 | STD | 20
30 | 26.54
31.76
34.35
36.94
42.09
46.57
51.03
56.72
60.50
71.72 | 45
55
59
64
73
81
89
99
106
126 | 53
64
69
74
85
94
103
115
123
147 | 72
87
94
101
116
128
141
157
168
200 | 79
95
103
111
126
140
154
172
184
219 | 89
107
116
125
143
159
174
194
208
248 | 96
115
125
135
154
171
187
209
223
267 | 103
124
134
144
165
183
201
224
240
286 | 112
134
145
156
178
198
218
243
259
314 | 120
144
156
168
192
213
235
262
280
334 | | 323.9 | 0.188
0.203
0.219
0.250
0.281
0.312
0.330
0.344
0.375
0.406
0.438
0.500 | 4.8
5.2
5.6
6.4
7.1
7.9
8.4
8.7
9.5
10.3
11.1
12.7 | STD | 20
30
40
80 | 37.77
40.87
43.96
50.11
55.47
61.56
65.35
67.62
73.65
79.65
85.62
97.46 | 46
50
54
61
68
76
81
83
91
99
106
122 | 54
58
63
71
79
88
94
97
106
115
124 | 73
79
85
97
108
120
128
132
145
157
169
193 | 80
87
93
106
118
131
140
145
158
171
185
211 | 90
98
106
121
134
149
158
164
179
194
209
239 | 97
105
113
130
144
160
170
176
192
209
225
256 | 104
113
122
139
154
172
183
189
206
224
241
276 | 113
122
132
150
167
186
198
205
223
242
261
299 | 122
132
142
162
180
200
213
221
241
261
281
322 | **TABLE - 2 : HYDROSTATIC INSPECTION TEST PRESSURE** (Contd.) | Outside | THK. | THK. | Desig | nation | Density | IN TEST | | • | ESTPRE | SSURE | (Kpax1 | 00) | | | |----------|---|--|----------------|----------------------|--|--|---|---|---|--|---|---|---|---| | Diameter | (inch.) | (mm) | Standard
X- | Schedule | (Plain
End) | | | | Ai | PI 5L GRAD | E | | | | | (mm) | (IFICIT.) | (111111) | Strong | No. | (Kg/Mtr) | А | В | X-42 | X-46 | X-52 | X-56 | X-60 | X-65 | X-70 | | 355.6 | 0.203
0.210
0.219
0.250
0.281
0.312
0.344
0.375
0.406
0.438
0.469
0.500
0.562 | 5.2
5.3
5.6
6.4
7.1
7.9
8.7
9.5
10.3
11.1
11.9
12.7
14.3 | STD | 10
20
30
40 | 44.93
45.78
48.33
55.11
61.02
67.74
74.42
81.08
87.71
94.30
100.86
107.39
120.36 | 45
46
49
56
62
69
76
83
90
97
104
111 | 53
54
57
65
72
80
88
97
105
113
121
129
145 | 72
73
78
89
98
110
121
132
143
154
165
176 | 79
80
85
97
108
120
132
144
156
168
180
192
217 | 89
91
96
110
122
136
149
163
177
191
204
219
245 | 96
98
103
118
131
145
161
175
190
205
220
234
264 | 103
105
111
127
141
156
172
188
204
220
236
251
283 | 111
114
120
137
152
169
186
203
221
238
255
272
306 | 120
122
129
148
164
182
201
219
238
256
275
293
330 | | 406.4 | 0.250
0.281
0.312
0.344
0.375
0.406
0.438
0.469
0.500
0.562 | 6.4
7.1
7.9
8.7
9.5
10.3
11.1
11.9
12.7
14.3 | STD | 10
20
30
40 | 63.13
69.91
77.63
85.32
92.98
100.61
108.20
115.77
123.30
138.27 | 49
54
60
66
73
79
85
91
97 | 57
63
70
77
85
92
99
106
113 | 78
86
96
106
115
125
135
144
154 | 85
94
105
115
126
137
147
158
168
190 | 96
107
119
131
143
155
167
179
191
215 | 102
111
128
140
153
166
179
192
205
231 | 111
123
137
151
165
178
192
206
220
248 | 120
133
148
163
178
193
208
223
238
250 | 129
143
160
176
192
208
224
240
250
250 | | 457.0 | 0.281
0.312
0.344
0.375
0.406
0.438
0.469
0.500
0.562 | 7.1
7.9
8.7
9.5
10.3
11.1
11.9
12.7
14.3 | STD | 20
30 | 78.77
87.49
96.18
104.84
113.46
122.05
130.62
139.15
156.11 | 48
54
59
65
70
75
81
86
97 | 56
62
69
75
81
88
94
100
113 | 77
85
94
102
111
120
128
137
154 | 84
93
103
112
121
131
140
150
169 | 95
106
116
127
138
148
159
170 | 102
113
125
136
148
159
171
182
205 | 109
122
134
146
159
171
183
196
220 | 118
132
145
158
172
185
198
212 | 128
142
156
171
185
199
214 | | 508.0 | 0.281
0.312
0.344
0.375
0.406
0.438
0.469
0.500
0.562 | 7.1
7.9
8.7
9.5
10.3
11.1
11.9
12.7
14.3 | STD | 20
30 | 87.70
97.43
107.12
116.78
126.41
136.01
145.58
155.12
174.10 | 43
48
53
58
63
68
73
78
87 | 51
56
62
68
73
79
85
90
102 | 73
81
89
98
106
114
122
131
147 | 80
89
98
107
116
125
134
143
161 | 90
100
111
121
131
141
151
162
182 | 97
108
119
130
141
152
163
174
196 | 104
116
128
139
151
163
175 | 113
125
138
151
164
176 | 122
135
149
163 | NOTE:1) Tset pressure at 75 % of SMYS for Grade A & B # TABLE: 3 INTERNAL DESIGN PRESSURE (Mpa) API 5L Gr X42 ERW PIPES (Plain End) | 741 SE GI 7 | (42 ERW PIPES | (Fiam End) | | | OUTSI | DE DIAMETE | ER IN MM | | | |-------------|---------------|---------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------| | | | 168.3 | 219.1 | 273.1 | 323.9 | 355.6 | 406.4 | 457.0 | 508.0 | | | 3.2 | P1 =39 P2 =83 | | | | | | | | | | 3.6 | P1 =44
P2 =93 | | | | | | | | | | 4.0 | P1 =49 P2 =103 | P1 =38 P2 =79 | P1 =30 P2 =72 | | | | | | | | 4.4 | P1 =55
P2 =114 | | | | | | | | | | 4.8 | P1 =60 P2 =124 | P1 = 46 P2 = 95 | P1 =36 P2 =87 | P1 =31 P2 =73 | | | | | | | 5.2 | P1 =65
P2 =134 | P1 =49 P2 =103 | P1 =40 P2 =94 | P1 =33 P2 =79 | P1 =30 P2 =72 | | | | | | 5.3 | | | | | P1 =30 P2 =73 | | | | | ∑
∑ | 5.6 | P1 =70 P2 =145 | P1 =53 P2 =111. | P1 =43 P2 =101 | P1 =36 P2 =85 | P1 =33 P2 =78 | | | | | z | 6.4 | P1 =80 P2 =165 | P1 =61 P2 =127 | P1 =49 P2 =116 | P1 =41 P2 =97 | P1 =37 P2 =89 | P1 =33 P2 =78 | | | | S | 7.0 | | P1 =67 P2 =139 | | | | | | | | E S | 7.1 | P1 =89
P2 =184 | | P1 =54 P2 =128 | P1 =46 P2 =108 | P1 =41 P2 =98 | P1 =36 P2 =86 | P1 =32 P2 =77 | P1 =30 P2 =73 | | X
V | 7.8 | | | P1 =60 P2 =141 | | | | | | | E C | 7.9 | P1 =99 P2 =204 | P1 =76 P2 =157 | | P1 =51 P2 =120 | P1 =46 P2 =110 | P1 =40 P2 =96 | P1 =35 P2 =85 | P1 =34 P2 =81 | | 5 | 8.2 | | P1 =79 P2 =163 | | | | | | | | ∢ | 8.4 | | | | P1 =54 P2 =128 | | | | | | Z
E | 8.7 | P1 =110 P2 =225 | P1 =84 P2 =173 | P1 =67 P2 =157 | P1 =56 P2 =132 | P1 =51 P2 =121 | P1 =44 P2 =106 | P1 =39 P2 =94 | P1 =37 P2 =89 | | 0
Z | 9.3 | | | P1 =71 P2 =168 | | | | | | | | 9.5 | P1 =120 P2 =246 | P1 =92 P2 =189 | | P1 =61 P2 =145 | P1 =56 P2 =132 | P1 =49 P2 =115 | P1 =42 P2 =102 | P1 =41 P2 =98 | | | 10.3 | | | | P1 =67 P2 =157 | P1 =61 P2 =143 | P1 =53 P2 =125 | P1 =46 P2 =111 | P1 =44 P2 =106 | | | 11.1 | | P1 =108 P2 =220 | P1 =86 P2 =200 | P1 =72 P2 =169 | P1 =65 P2 =154 | P1 =57 P2 =135 | P1 =50 P2 =120 | P1 =48 P2 =114 | | | 11.9 | | | | | P1 =70 P2 =165 | P1 =61 P2 =144 | P1 =53 P2 =128 | P1 =51 P2 =122 | | | 12.7 | | | | P1 =83 P2 =193 | P1 =75 P2 =176 | P1 =65 P2 =154 | P1 =57 P2 =137 | P1 =55 P2 =131 | | | 14.3 | | | | | P1 =83 P2 =198 | P1 =72
P2 =173 | P1 =64 P2 =154 | P1 =51 P2 =147 | TABLE NO. 4: PHYSICAL AND CHEMICAL REQUIREMENTS API 5L (44TH EDITION) | | | | | Tensile Properties | | | | | | | Chemical Requirements(Heat or Product) | | | | | | | |-----------------|---|----------------|---------------------|--------------------|------------|------|-----------------|-----------------------|--|----------|--|----------|----------|----------|--|--|--| | STEEL | | Product | | Yield Stre | ngth(Mpa) | Ī | ensile Strengtl | n(Mpa) | Min.Elongation | С | Mn | Р | S | Si | | | | | & PIPE
GRADE | | Spec.
Level | Pipe Size | | Pipe | Body | | Weld Seam
HFW Pipe | % in 50mm
Gauge Length
(Approximate) | Max
% | Max or
Range
% | Max
% | Max
% | Max
% | | | | | | | | | (Min) | lin) (Max) | | (Max) | (Min) | (%) | | | | | | | | | | A L210 | | PSL-1 | 6.625"-20" Ф | 210 | _ | 335 | | 335 | 29 - 34 | 0.22 | 0.90 | 0.030 | 0.030 | _ | | | | | В | | PSL-1 | 6.625"-20" Ф | 245 | _ | 415 | | 415 | 25 - 28 | 0.26 | 1.20 | 0.030 | 0.030 | | | | | | L245 | М | PSL-2 | 6.625"-20" Ф | 245 | 450 | 415 | 760 | 415 | 25 - 28 | 0.24 | 1.20 | 0.025 | 0.015 | 0.45 | | | | | X-42 | | PSL-1 | 6.625"-20" Ф | 290 | _ | 415 | | 415 | 24 - 28 | 0.26 | 1.30 | 0.030 | 0.030 | | | | | | L290 | М | PSL-2 | 6.625"-20" Φ | 290 | 495 | 415 | 760 | 415 | 24 - 28 | 0.24 | 1.20 | 0.025 | 0.015 | 0.45 | | | | | X-46 | | PSL-1 | 6.625"-20" Φ | 320 | _ | 435 | | 435 | 23 - 27 | 0.26 | 1.40 | 0.030 | 0.030 | | | | | | L320 | М | PSL-2 | 6.625"-20" Φ | 320 | 525 | 435 | 760 | 435 | 23 - 27 | 0.24 | 1.40 | 0.025 | 0.015 | 0.45 | | | | | X-52 | | PSL-1 | 6.625"-20" Ф | 360 | _ | 460 | | 460 | 22 - 26 | 0.26 | 1.40 | 0.030 | 0.030 | | | | | | L360 | М | PSL-2 | 6.625"-20" Ф | 360 | 530 | 460 | 760 | 460 | 22 - 26 | 0.24 | 1.40 | 0.025 | 0.015 | 0.45 | | | | | X-56 | | PSL-1 | 6.625"-20" Ф | 390 | _ | 490 | | 490 | 20 - 24 | 0.26 | 1.40 | 0.030 | 0.030 | | | | | | L390 | М | PSL-2 | 6.625"-20" Ф | 390 | 545 | 490 | 760 | 490 | 20 - 24 | 0.24 | 1.40 | 0.025 | 0.015 | 0.45 | | | | | X-60 | | PSL-1 | 6.625"-20" Ф | 415 | _ | 520 | | 520 | 20 - 22 | 0.26 | 1.40 | 0.030 | 0.030 | | | | | | L415 | М | PSL-2 | 6.625"-20" Ф | 415 | 565 | 520 | 760 | 520 | 20 - 22 | 0.24 | 1.40 | 0.025 | 0.015 | 0.45 | | | | | X-65 | | PSL-1 | 6.625"-20" Ф | 450 | _ | 535 | | 535 | 19 - 22 | 0.26 | 1.45 | 0.030 | 0.030 | | | | | | L450 | М | PSL-2 | 6.625"-20" Ф | 450 | 600 | 535 | 760 | 535 | 19 - 22 | 0.18 | 1.70 | 0.025 | 0.015 | 0.45 | | | | | X-70 | | PSL-1 | 6.625"-20" Ф | 485 | _ | 570 | | 570 | 19 - 21 | 0.26 | 1.65 | 0.030 | 0.030 | | | | | | L485 | М | PSL-2 | 6.625"-20" Ф | 485 | 635 | 570 | 760 | 570 | 19 - 21 | 0.18 | 1.80 | 0.025 | 0.015 | 0.45 | | | | NB: 1 Cu,Cr, & Ni should not be added intentionally upto X-52/ L360 Grade. ² PSL 2: CE-iiw =0.43 max when C≥0.12/ CE-pcm =0.25max when C ≤0.12. ³ Nb,V,Ti & other elements details: Refer Original specification or as agreed upon ⁴ PSL 2(HFW): (a) Strip for HFW to be thermo-mechanically rolled strip or normallising rolled strip. (b) Pipe heat treatment - weld area only. ⁵ Refer to original Spec API 5L (44th Edition) for details. # TABLE - 5 : PIPE SPECIFICATION - PHYSICAL AND CHEMICAL REQUIREMENTS | SI No | Specification | Application & | Grade | Pipe Size | Ter | nsile Propert | ies | | Ch | ımical Requir | ements (pe | ercent) | | | | |-------|---------------|--|---|--|--------------------------|--|----------------------|------------------------------|--|------------------------------|----------------------------------|------------------------------|----------------------|--|--| | | | recommendation | | | Yield | Tensile | Min | С | Mn | Р | S | Si | Others | End Finish | Surface Finish | | | | | | | Strength
Mpa (Min.) | Strength
Mpa (Min.) | Eln.
% in 50 mm. | (Max.) | (max or
range) | (Max.) | (Max.) | (Max.) | | | | | 1 | AWWA C200 | Steel Water Pipe 6 Inches and Larger | ASTM A 53
Gr: A | 6" - 20" | 205 | 330 | 23 | 0.25 | 0.95 | 0.05 | 0.05 | | _ | Plain Bevel End - bevelled to 30 degrees with a root face of 1.6 mm | Black - pipe has a protective lacquor finish unless | | | | | ASTM A 53
Gr: B | | 240 | 415 | 19 | 0.3 | 1.2 | 0.05 | 0.05 | | _ | 2). Plain square cut end -
when agreed | agreed upon | | 2 | ASTM A 53 | General purpose pipe suitable for welding, forming and operations involving bending and flanging | A
B | NPS 6 - 16
NPS 6 - 16 | 205
240 | 330
415 | 23
19 | 0.25
0.3 | 0.95
1.2 | 0.05
0.05 | 0.05
0.05 | | _
_ | Plain Bevel End - bevelled to 30 degrees with a root face of 1.6 mm Plain square cut end - when agreed | Black - pipe has a protective lacquer finish on the outside | | 3 | ASTM A 500 | Cold formed welded Structural
Tubing for Bridges, Buildings &
General Structural | Gr A
Gr B | NPS 6 - 20
NPS 6 - 20 | 230
290 | 310
400 | 25
23 | 0.26
0.26 | 1.35
1.35 | 0.035
0.035 | 0.035
0.035 | | Cu:0.20
if agreed | · | Bare | | 4 | IS: 1161 | Steel Tubes for Structural Purpose | Yst - 210
Yst - 240
Yst - 310 | 168.3 - 355.6 mm
& Class - L /M / H | 210
240
310 | 330
410
450 | 20
17
14 | 0.120
0.160
0.250 | 0.60
1.20
1.30 | 0.04
0.04
0.04 | 0.040
0.040
0.040 | | _
_
_ | Plain square cut end | Black - pipe has a protective lacquor finish unless agreed upon | | 5 | IS: 3589 | Steel pipes for Water & Sewage. | Fe 330
Fe 410
Fe 450 | 168.3 - 508.0 mm
168.3 - 508.0 mm
168.3 - 508.0 mm | 195
235
275 | 330
410
450 | 20
18
15 | 0.160
0.200
0.250 | 1.20
1.30
1.20 | 0.04
0.04
0.04 | 0.040
0.040
0.040 | | _
_
_ | Plain Bevel End (when agreed) & 2). Plain square cut end | Black - pipe has a protective
lacquor finish unless
agreed upon | | 6 | IS: 4270 | Steel Tubes used for water wells
(Plain End Casing Pipes) | Fe 410
Fe 450 | 168.3 - 457.2 mm
168.3 - 457.2 mm | 235
275 | 410
450 | 15
13 | _
_ | _
_ | 0.04
0.04 | 0.040
0.040 | | _ | Plain Bevel End (ends as agreed) & 2). Plain square cut end | Black - pipe has a protective anti corrosive coating as specified | | 7 | IS: 1978 | Welded Line Pipe for conveying
Gas, Water & Oil | Yst 170
Yst 210
Yst 240 | 168.3 - 508.0 mm
168.3 - 508.0 mm
168.3 - 508.0 mm | 170
210
240 | 310
330
410 | As
per
Spec | 0.21
0.22
0.27 | 0.30-0.60
0.90
1.15 | 0.045
0.045
0.045 | 0.060
0.050
0.050 | _
_
_ | _
_
_ | Plain End ERW Pipe | Mill coating for
rust prevention
are there | | 8 | JIS G 3452 | Carbon Steel Pipes for ordinary piping | SGP | 355.6 - 508.0 mm | - | 290 | 25 | _ | _ | 0.04 | 0.04 | _ | _ | Plain Bevel End - bevelled to 30 degrees with a root face of 1.6 mm | Black - pipe has a protective
lacquor finish unless
agreed upon | | 9 | DIN 17172 | Steel Pipes For Pipe Lines For The Transport Of Combustable Fluids And Gases (As Rolled or Normalised Steel) | StE210.7
SteE240.7
StE290.7
StE320.7 | 168.3 - 508.0 mm OD
168.3 - 508.0 mm OD
168.3 - 508.0 mm OD
168.3 - 508.0 mm OD | 205
235
275
325 | 325 - 440
372 - 490
422 - 540
460 - 580 | 26
24
23
21 | 0.17
0.17
0.22
0.22 | 0.35 min
0.40 min
0.50 - 1.10
0.70 - 1.30 | 0.04
0.04
0.04
0.04 | 0.035
0.035
0.035
0.035 | 0.45
0.45
0.45
0.45 | _
_
_
_ | Plain Bevel End - bevelled to 30 degrees with a root face of 1.6 mm | Unless specified as bare,
pipe has a protective
rust preventive finish | | | | | StE360.7
StE385.7
StE415.7 | 168.3 - 508.0 mm OD
168.3 - 508.0 mm OD
168.3 - 508.0 mm OD | 360
380
410 | 510 - 630
530 - 680
550 - 770 | 20
19
18 | 0.22
0.23
0.23 | 0.90 - 1.50
1.0 - 1.5
1.0 - 1.5 | 0.04
0.04
0.04 | 0.035
0.035
0.035 | 0.55
0.55
0.55 | _
_
_ | 2). Plain square cut end
- when agreed | on the outside. | #### **WORKS OTHER PRODUCTS** #### **COLD ROLLED STEEL** Thickness: 0.10 mm - 0.80 mm Width: 700 mm - 1250 mm Capacity: 4,00,000 MT Per Annum 2 6HI Reversing Cold Rolling Mills2 4HI Reversing Cold Rolling Mills # GALVANIZED PLAIN & CORRUGATED SHEET / COIL Thickness: 0.10 mm - 0.80 mm Width: 700 mm - 1250 mm Capacity: 3,50,000 MT Per Annum 4 Continuous Galvanizing Lines - N. B.: 1. The Content of this brouchure must not be reprinted without the Express written consent of Jindal (India) Ltd. - 2. Jindal (India) Ltd. disclaims any liability, for the use of the information and data, contained herein. The reader should satisfy himself as to do potential applicability or suitability. JIL/QAQC/Tech/08-09 Revised Edition: 01/09-10 #### JINDAL (INDIA) LIMITED #### Regd. & Head Office: 2/1, Ahmed Mamji Street, Liluah Howrah 711 204, West Bengal, India #### **Corporate Office:** OCTAVIUS CHAMBER, 2nd Floor 15C, Hemanta Basu Sarani Kolkata 700 001, India Phone: +91 33 2248 1160 Fax: +91 33 22481059 Email: linepipe@jindalindia.com #### Works No.1 4, Dharmatalla Road Belurmath, Howrah 711 202 West Bengal, India #### Works No.2 107/2, Jaya Bibi Lane Ghusury, Howrah 711 107 West Bengal, India #### Works No.3 N. H. No. 6, Mouza - Jangalpur P.O. Argori, G.P.O.: Andul Dist: Howrah 711 302 West Bengal, India Email: linepipe@jindalindia.com